x+y=5x+y=5 and x^y+y^x=17xy+yx=17 Find the value of x and yxandy?

1 Answer
Jun 19, 2017

x=2, y=3x=2,y=3
Assuming {x,y} in NN

Explanation:

Here we have two equations:

x+y =5

x^y+y^x=17

{Although there is no resaon to assume that x and y are naturals, it seemed like a sensible place to start.}

Assume {x,y} in NN

Since x+y = 5

x in { 1, 2, 3, 4} and y in {4, 3, 2, 1}

Testing each (x, y) pair in turn we notice that:

2^3+3^2 = 8 + 9 =17

Hence a solution to this system is x=2, y=3

NB: I have not worked through the cases where (x, y) in RR, Hence, I have not proved that there are no other real solutions to this system.