#y=sin(msin^-1x)#, then check whether or not #(1-x^2)y_(n+2)-(2n+1)xy_(n+1)+(m^2-n^2)y_n=0#, also find #y_n(0)#?

2 Answers
May 10, 2018

Please see below.

Explanation:

Here,

#y=sin(msin^-1x)...to(1)#

Diff.w.r.t.#x#

#y_1=cos(msin^-1x)d/(dx)(msin^-1x)#

#y_1=cos(msin^-1x)xxm/sqrt(1-x^2)#

#sqrt(1-x^2)*y_1=mcos(msin^-1x)#

Squaring both sides

#(1-x^2)y_1^2=m^2cos^2(msin^-1x)=m^2(1-sin^2(msin^-1x))#

#(1-x^2)y_1^2=m^2(1-y^2)...to(2)#

Again diff.w.r.t.#x#

#(1-x^2)2y_1y_2-2xy_1^2=m^2(-2yy_1)...to(3)#

Dividing both sides by #2y_1#

#(1-x^2)y_2-xy_1+m^2y=0...to(4)#

#"Using "color(blue)"Leibnitz's Theorem"# to diff.each term of # (4)#, n times

#(i)D^n(1-x^2)y_2= color(green)(y_(n+2)(1-x^2))+color(red)(ny_(n+1)(-2x))+color(blue)((n*(n-1))/(1*2)y_n(-2)to(A)#

#(ii)D^n(-xy_1)=color(red)(-y_(n+1)(x)-color(blue)(ny_n(1)...to(B)#

#(iii)D^n(m^2y)=color(blue)(m^2y_n...to(C)#

Adding right hand side terms of #(A),(B),and(C)#

#y_(n+2)(1-x^2)+y_(n+1)[-2nx-x]+y_n[-n^2+n-n+m^2]=0#

#=>(1-x^2)y_(n+2)-(2n+1)xy_(n+1)+(m^2-n^2)y_n=0#

Please see the second answer.
[contd.]

May 10, 2018

#if,n# is even then #y_n(0)=0#

And #n ,is ,odd=>(n-2)# is odd

#=>y_(n-2)=[(n-2)^2-m^2]...(3^2-m^2)(1^2-m^2)*m#

Explanation:

we continue the answer from the point reached in Part-1

For #y_n(0)# , we take #x=0# in #(1),(2),(3),(4)#

#(1)y=sin(msin^-1x)=>y=0#

#(2)(1-x^2)y_1^2=m^2(1-y^2)=>y_1=m#

#(3)(1-x^2)y_2-xy_1+m^2y=0=>y_2=0#

#(4)(1-x^2)y_(n+2)-(2n+1)xy_(n+1)+(m^2-n^2)y_n=0#

#=>y_(n+2)=-(m^2-n^2)y_n and# putting # n=2#

#=>y_4=-(m^2-2^2)y_2=0...to[as,y_2=0]#

Similarly,we get, #y_6=0,y_8=0,y_10=0,y_12=0...#

#i.e.if,n# is even then #y_n(0)=0#

Again putting #n=1,3,5,7,...# (n is odd) and #x=0# in #(4)#

#n=1=>y_3+(m^2-1^2)y_1=0=>y_3=(1^2-m^2)*m#

#n=3=>y_5+(m^2-3^2)y_3=0#

#=>y_5=(3^2-m^2)(1^2-m^2)*m#

#n=5=>y_7=(5^2-m^2)(3^2-m^2)(1^2-m^2)*m#
...........................

And #n ,is ,odd=>(n-2)# is odd

#=>y_(n-2)=[(n-2)^2-m^2]...(3^2-m^2)(1^2-m^2)*m#