Y varies directly as x and inversely as the square of z. y=12 when x=64 and z=4. How do you find y when x=96 and z=2?
1 Answer
Jul 29, 2017
Explanation:
#"the initial statement is "ypropx/z^2#
#"to convert to an equation multiply by k the constant"#
#"of variation"#
#rArry=kxx x/z^2=(kx)/z^2#
#"to find k use the given condition"#
#y=12" when "x=64" and "z=4#
#y=(kx)/z^2rArrk=(yz^2)/x=(12xx16)/64=3#
#"equation is " color(red)(bar(ul(|color(white)(2/2)color(black)(y=(3x)/z^2)color(white)(2/2)|)))#
#"when "x=96" and "z=2#
#rArry=(3xx96)/4=72#