You have 188 feet of fencing to enclose a rectangular region. What is the maximum area?

1 Answer
Apr 9, 2016

#2209# square feet

Explanation:

#1#. Make "let" statements to represent the length and width of the rectangular region.

Let #x# represent the length.
Let #(188-2x)/2=94-x# represent the width.

#2#. Create an algebraic expression represent the area of a rectangle.

#A_"rectangle"=x(94-x)#

#3#. Complete the square.

#A_"rectangle"=94x-x^2#

#A_"rectangle"=-(x^2-94x)#

#A_"rectangle"=-(x^2-94x+(-94/2)^2-(-94/2)^2)#

#A_"rectangle"=-(x-47)^2+2209#

#:.#, the maximum area of the rectangular region is #2209# square feet.