What is the derivative of y=(1-sec(x))/tan(x)y=1sec(x)tan(x)?

1 Answer
Jul 27, 2014

Answer, y'=(cos(x)-1)/(sin^2(x))

This problem can be solved by two methods, as mentioned below :

Explanation (I), Simplifying the expression

y=(1-sec(x))/tan(x) = 1/tan(x)-sec(x)/tan(x)

y=cot(x)-1/cos(x)*cos(x)/sin(x)=cot(x)-csc(x)

y'=(cot(x)-csc(x))'

y'=-csc^2(x)+csc(x)cot(x)

y'=csc(x)(cot(x)-csc(x))

y'=1/sin(x)(cos(x)/sin(x)-1/sin(x))

y'=(cos(x)-1)/(sin^2(x))

Explanation (II)

This can also be solved using Quotient Rule

Which is ,

y=f(x)/g(x), then y'=(f'(x)g(x)-f(x)g'(x))/(g(x))^2

In same way, for the problem,

y'=((1-sec(x))'tan(x)-(1-sec(x))(tan(x))')/(tan^2(x))

y'=((-sec(x)tan(x))tan(x)-(1-sec(x))sec^2(x))/(tan^2(x))

y'=(-sec(x)tan^2(x)-sec^2(x)+sec^3(x))/(tan^2(x))

If we club first and last term,

y'=(sec(x)(sec^2(x)-tan^2(x))-sec^2(x))/(tan^2(x))

Using Trigonometric Identity, sec^2x-tan^2x=1

y'=(sec(x)-sec^2(x))/(tan^2(x))

Simplifying further, we get

y'=(cos(x)-1)/(sin^2(x))