How do you show the limit does not exist lim_(x->4)(x-4)/(x^2-8x+16) ?
1 Answer
Aug 4, 2014
=
oo Solution
=lim_(x→4)((x-4)/(x^2-8x+16)) , plugging the limit we get0/0
=lim_(x→4)((x-4)/(x^2-4x-4x+16))
=lim_(x→4)((x-4)/(x(x-4)-4(x-4)))
=lim_(x→4)(x-4)/((x-4)^2)
=lim_(x→4)1/((x-4)) Now applying the limit, we get
=1/0=oo , which implies limit does not exist