How do you use the quotient rule to find the derivative of y=x/ln(x) ?
1 Answer
Aug 13, 2014
y'=(lnx-1)/(lnx)^2 Explanation
Suppose,
y=f(x)/g(x) Using Quotient Rule, which is
y'=(f'(x)g(x)-f(x)g'(x))/(g(x))^2 Similarly, following for the given problem
y=x/lnx and differentiating with respect tox , yields
y'=((x)'(lnx)-x(lnx)')/(lnx)^2
y'=(lnx-x*1/x)/(lnx)^2
y'=(lnx-1)/(lnx)^2