How do you evaluate the integral ∫e4xdx?
1 Answer
Aug 13, 2014
We will use
Thus,
Also, we will use the constant law of integration, namely
∫e4xdx=14∫4⋅e4xdx
Now, we will rewrite in terms of
∫e4xdx=14∫eudu
We know that the integral of
∫e4xdx=14eu+C
Substituting back
∫e4xdx=14e4x+C