How do I convert Cartesian coordinates to polar coordinates?

1 Answer
Aug 19, 2014

Wikimedia

Let's look at the trig formulas SYR, CXR, TYX:

sin theta = y/rsinθ=yr
cos theta = x/rcosθ=xr
tan theta = y/xtanθ=yx

Since we are given the Cartesian coordinates, we are given xx and yy. For polar coordinates, we need to figure out rr and thetaθ. rr is easy, we just use Pythagorean:

r=sqrt(x^2+y^2)r=x2+y2

To figure out thetaθ, I like to use cosine because the range of arccosine is in quadrants I and II and adjusting theta' is easier. So,

theta'=cos^(-1)x/r

If y>=0 then theta=theta'.
If y<0 then theta=2 pi - theta' (in radians) or theta=360-theta' (in degrees).

Our final answer is (r, theta).

Let's look at a concrete example: Convert (-3, 3sqrt3) to polar coordinates:

r=sqrt((-3)^2+(3sqrt3)^2)=sqrt(36)=6
theta'=cos^(-1)((-3)/6)=(2pi)/3
y<0 so, theta=2pi-(2pi)/3=(4pi)/3

So the polar coordinates are (6, (4pi)/3).