How do I convert Cartesian coordinates to polar coordinates?

1 Answer
Aug 19, 2014

Wikimedia

Let's look at the trig formulas SYR, CXR, TYX:

#sin theta = y/r#
#cos theta = x/r#
#tan theta = y/x#

Since we are given the Cartesian coordinates, we are given #x# and #y#. For polar coordinates, we need to figure out #r# and #theta#. #r# is easy, we just use Pythagorean:

#r=sqrt(x^2+y^2)#

To figure out #theta#, I like to use cosine because the range of arccosine is in quadrants I and II and adjusting #theta'# is easier. So,

#theta'=cos^(-1)x/r#

If #y>=0# then #theta=theta'#.
If #y<0# then #theta=2 pi - theta'# (in radians) or #theta=360-theta'# (in degrees).

Our final answer is #(r, theta)#.

Let's look at a concrete example: Convert #(-3, 3sqrt3)# to polar coordinates:

#r=sqrt((-3)^2+(3sqrt3)^2)=sqrt(36)=6#
#theta'=cos^(-1)((-3)/6)=(2pi)/3#
#y<0# so, #theta=2pi-(2pi)/3=(4pi)/3#

So the polar coordinates are #(6, (4pi)/3)#.