How do you find the inflection point of a logistic function?
1 Answer
The answer is
To solve this, we solve it like any other inflection point; we find where the second derivative is zero.
P(t)=K/(1+Ae^(-kt))
=K(1+Ae^(-kt))^(-1)
P'(t)=-K(1+Ae^(-kt))^(-2)(-Ake^(-kt)) power chain rule
P''(t)=2K(1+Ae^(-kt))^(-3)(-Ake^(-kt))^2-K(1+Ae^(-kt))^(-2)(Ak^2e^(-kt)) product and chain rule
Now we solve:
2K(1+Ae^(-kt))^(-3)(-Ake^(-kt))^2-K(1+Ae^(-kt))^(-2)(Ak^2e^(-kt))=0
2(1+Ae^(-kt))^(-1)(-Ake^(-kt))^2-(Ak^2e^(-kt))=0 cancel
2(1+Ae^(-kt))^(-1)(Ake^(-kt))^2-k(Ake^(-kt))=0 factor out
2(1+Ae^(-kt))^(-1)(Ake^(-kt))-k=0 cancel
2(1+Ae^(-kt))^(-1)(Ake^(-kt))=k
2Ake^(-kt)=k(1+Ae^(-kt)) cancel
2Ae^(-kt)=1+Ae^(-kt)
2Ae^(-kt)-Ae^(-kt)=1
Ae^(-kt)=1
e^(-kt)=1/A
-kt=-lnA log rules
t=(lnA)/k
This gives us
P((lnA)/k)=K/(1+Ae^(-k(lnA)/k))
=K/(1+Ae^(-(lnA))) log rules
=K/(1+A/A)
=K/(1+1)
=K/2
It's a lot of algebra, so be very careful with factoring, cancelling, and negative signs.