How do you find the Maclaurin series of f(x)=ln(1+x) ?

1 Answer
Aug 29, 2014

The Maclaurin series of f(x)=ln(1+x) is:
f(x)=sum_{n=0}^{infty}(-1)^{n}{x^{n+1}}/{n+1},
where |x|<1.

First, let us find the Maclaurin series for
f'(x)=1/{1+x}=1/{1-(-x)}.

Remember that
1/{1-x}=sum_{n=0}^{infty}x^n if |x|<1.
(Note: This can be justified by viewing it as a geometric series.)

By replacing x by -x,
f'(x)=1/{1-(-x)}=sum_{n=0}^{infty}(-x)^n=sum_{n=0}^{infty}(-1)^nx^n

By integrating using Power Rule,
f(x)=intsum_{n=0}^{infty}(-1)^nx^n dx=sum_{n=0}^{infty}(-1)^n{x^{n+1}}/{n+1}+C
(Note: integration can be done term by term.)

Since f(0)=ln[1+(0)]=0,
f(0)=sum_{n=0}^{infty}(-1)^{n}{(0)^{n+1}}/{n+1}+C=C=0.

Hence,
f(x)=sum_{n=0}^{infty}(-1)^{n}{x^{n+1}}/{n+1}.