How do you use the quotient rule to find the derivative of y=(1+sqrt(x))/(1-sqrt(x))y=1+√x1−√x ?
1 Answer
Sep 2, 2014
y'=1/(sqrtx)*1/((1-sqrtx)^2) Explanation :
Using Quotient Rule, which is
y=f(x)/g(x) , then
y'=(g(x)f'(x)-f(x)g'(x))/(g(x))^2 Similarly following for the given problem,
y=(1+sqrtx)/(1-sqrtx)
y'=((1-sqrtx)(1/(2sqrtx))-(1+sqrtx)(-1/(2sqrtx)))/((1-sqrtx)^2)
y'=1/(2sqrtx)*(1-sqrtx+1+sqrtx)/((1-sqrtx)^2)
y'=1/(2sqrtx)*(2)/((1-sqrtx)^2)
y'=1/(sqrtx)*1/((1-sqrtx)^2)