How do you use the quotient rule to find the derivative of y=e^x/cos(x)y=excos(x) ?
1 Answer
Sep 16, 2014
y'=(e^x*(cosx+sinx))/(cos^2x) Explanation :
let's
y=f(x)/g(x) then Using quotient rule to find derivative of above function,
y'=(f'(x)g(x)-f(x)g'(x))/(g(x))^2 Similarly following for the given problem,
y=e^x/cos(x) , yields
y'=(e^x*cos(x)-e^x*(-sinx))/(cos^2x)
y'=(e^x*(cosx+sinx))/(cos^2x)