How do you Use the trapezoidal rule with n=6n=6 to approximate the integral int_0^3dx/(1+x^2+x^4)dx30dx1+x2+x4dx?

1 Answer
Sep 16, 2014

The answer is 4643/518746435187.

The trapezoidal rule is just a formula. From what we are given, we have:

a=0a=0
b=3b=3
n=6n=6
f(x)=1/(1+x^2+x^4)f(x)=11+x2+x4
h=(b-a)/n=1/2h=ban=12

The formula is:

T=h/2[f(x_0)+2f(x_1)+2f(x_2)+2f(x_3)+2f(x_4)+2f(x_5)+f(x_6)]T=h2[f(x0)+2f(x1)+2f(x2)+2f(x3)+2f(x4)+2f(x5)+f(x6)]
f(x_0)=f(0)=1/1f(x0)=f(0)=11
f(x_1)=f(1/2)=1/(1+1/4+1/16)=16/21f(x1)=f(12)=11+14+116=1621
f(x_2)=f(1)=1/(1+1+1)=1/3f(x2)=f(1)=11+1+1=13
f(x_3)=f(3/2)=1/(1+9/4+81/16)=16/133f(x3)=f(32)=11+94+8116=16133
f(x_4)=f(2)=1/(1+4+16)=1/21f(x4)=f(2)=11+4+16=121
f(x_5)=f(5/2)=1/(1+25/4+625/16)=16/741f(x5)=f(52)=11+254+62516=16741
f(x_6)=f(3)=1/(1+9+81)=1/91f(x6)=f(3)=11+9+81=191
T=1/4[1+32/21+2/3+32/133+2/21+32/741+1/91]T=14[1+3221+23+32133+221+32741+191]
T=4643/5187~~.89512T=46435187.89512

Using numeric integration on a graphing calculator, we get T~~.89537T.89537. So our answer is good for 3 sig figs.