Integration Using the Trapezoidal Rule

Key Questions

  • Let us approximate the definite integral

    int_a^b f(x)dx

    by Trapezoid Rule T_n.

    First, split the interval [a,b] into n equal subintervals:

    [x_0,x_1], [x_1,x_2],[x_2,x_3],...,[x_{n-1},x_{n}],

    where a=x_0 < x_1 < x_2< cdots < x_n=b.

    Trapezoid Rule T_n can be found by

    T_n=[f(x_0)+2f(x_1)+2f(x_2)+cdots+2f(x_{n-1})+f(x_n)]{b-a}/{2n}.


    I hope that this was helpful.

  • First split the interval [a,b] into 4 equal subintervals:

    [x_0,x_1],[x_1,x_2],[x_2,x_3], and [x_3,x_4].

    (Note: x_0=a and x_4=b)

    The definite integral

    int_a^b f(x)dx

    can be approximated by

    T_4=[f(x_0)+2f(x_1)+2f(x_2)+2f(x_3)+f(x_4)]cdot{Delta x}/{2},

    where Delta x={b-a}/4.

    I hope that this is helpful.

  • Let us divide the interval [a,b] into n subintervals of equal lengths.

    [a,b] to {[x_0,x_1], [x_1,x_2],[x_2,x_3],...,[x_{n-1},x_n]},

    where a=x_0 < x_1 < x_2 < cdots < x_n=b.

    We can approximate the definite integral

    int_a^b f(x)dx

    by Trapezoid Rule

    T_n=[f(x_0)+2f(x_1)+2f(x_2)+cdots2f(x_{n-1})+f(x_n)]{b-a}/{2n}

Questions