Integration Using the Trapezoidal Rule
Key Questions
-
Let us approximate the definite integral
int_a^b f(x)dx by Trapezoid Rule
T_n .First, split the interval
[a,b] inton equal subintervals:[x_0,x_1], [x_1,x_2],[x_2,x_3],...,[x_{n-1},x_{n}] ,where
a=x_0 < x_1 < x_2< cdots < x_n=b .Trapezoid Rule
T_n can be found byT_n=[f(x_0)+2f(x_1)+2f(x_2)+cdots+2f(x_{n-1})+f(x_n)]{b-a}/{2n} .
I hope that this was helpful.
-
First split the interval
[a,b] into 4 equal subintervals:[x_0,x_1],[x_1,x_2],[x_2,x_3] , and[x_3,x_4] .(Note:
x_0=a andx_4=b )The definite integral
int_a^b f(x)dx can be approximated by
T_4=[f(x_0)+2f(x_1)+2f(x_2)+2f(x_3)+f(x_4)]cdot{Delta x}/{2} ,where
Delta x={b-a}/4 .I hope that this is helpful.
-
Let us divide the interval
[a,b] into n subintervals of equal lengths.[a,b] to {[x_0,x_1], [x_1,x_2],[x_2,x_3],...,[x_{n-1},x_n]} ,where
a=x_0 < x_1 < x_2 < cdots < x_n=b .We can approximate the definite integral
int_a^b f(x)dx by Trapezoid Rule
T_n=[f(x_0)+2f(x_1)+2f(x_2)+cdots2f(x_{n-1})+f(x_n)]{b-a}/{2n}