How do you Use the trapezoidal rule with n=6 to approximate the integral ∫30dx1+x2+x4dx?
1 Answer
Sep 16, 2014
The answer is
The trapezoidal rule is just a formula. From what we are given, we have:
a=0
b=3
n=6
f(x)=11+x2+x4
h=b−an=12
The formula is:
T=h2[f(x0)+2f(x1)+2f(x2)+2f(x3)+2f(x4)+2f(x5)+f(x6)]
f(x0)=f(0)=11
f(x1)=f(12)=11+14+116=1621
f(x2)=f(1)=11+1+1=13
f(x3)=f(32)=11+94+8116=16133
f(x4)=f(2)=11+4+16=121
f(x5)=f(52)=11+254+62516=16741
f(x6)=f(3)=11+9+81=191
T=14[1+3221+23+32133+221+32741+191]
T=46435187≈.89512
Using numeric integration on a graphing calculator, we get