How do you find the area of the region bounded by the polar curves r=3cos(θ) and r=sin(θ) ?

1 Answer
Sep 25, 2014

The area of the enclosed region is 524π34.

It looks like this:

enter image source here

A=π30sinθ0rdrdθ+π2π33cosθ0rdrdθ

=π30[r22]sinθ0dθ+π2π3[r22]3cosθ0dθ

=π30sin2θ2dθ+π2π33cos2θ2dθ

=14π30(1sin2θ)dθ+34π2π3(1+cos2θ)dθ

=14[θsin2θ2]π30+34[θ+sin2θ2]π2π3

=14(π334)+34(π634)

=524π34