What is the definite integral of sec^4 xsec4x from 0 to pi/4π4?

1 Answer
Sep 30, 2014

int_0^(pi/4)sec^4(x)dx=int_0^(pi/4)sec^2(x)sec^2(x)dxπ40sec4(x)dx=π40sec2(x)sec2(x)dx

Trig Identity

sec^2(x)=tan^2(x)+1sec2(x)=tan2(x)+1

Use this identity to substitute for one of the sec^2(x)sec2(x).

int_0^(pi/4)[tan^2(x)+1]sec^2(x)dxπ40[tan2(x)+1]sec2(x)dx

Now begin with u-substitution

Let u=tan(x)u=tan(x)

du=sec^2(x) dxdu=sec2(x)dx

int[u^2+1] du[u2+1]du

[u^3/3+u][u33+u] Convert back to terms of x -> [tan(x)^3/3+tan(x)]_0^(pi/4)[tan(x)33+tan(x)]π40

=[tan(pi/4)^3/3+tan(pi/4)-(tan(0)/3+tan(0))]=tan(π4)33+tan(π4)(tan(0)3+tan(0))

=[(1)^3/3+1-(0+0)]=[(1)33+1(0+0)]

=[1/3+1]=[13+1]

=[1/3+3/3]=[13+33]

=[4/3]=[43]

=1.3333=1.3333

Video solution here

Remember that, sec(x)=1/cos(x)sec(x)=1cos(x)

So we can also say, sec^4(x)=1/(cos^4(x))sec4(x)=1cos4(x)

enter image source here

After graphing press 2nd and then TRACE

Press 7 for integration, intf(x)dxf(x)dx

Then enter the LOWER and UPPER LIMITS

See the results of those actions below.

enter image source here