How do I use the limit definition of derivative to find #f'(x)# for #f(x)=1/sqrt(x)# ?

1 Answer
Oct 1, 2014

#f(x)=1/sqrt(x)=1/x^(1/2)=x^(-1/2)#

Note that a square root is equivalent to raising an expression to the #1/2# power.

#f'(x)=lim_(h->0) (f(x+h)-f(x))/h#

#f(x+h)=1/sqrt(x+h)#

#f'(x)=lim_(h->0) (1/sqrt(x+h)-1/sqrt(x))/h#

Find the common denominator

#f'(x)=lim_(h->0) (1/sqrt(x+h)*sqrt(x)/sqrt(x)-1/sqrt(x)*sqrt(x+h)/sqrt(x+h))/h#

#f'(x)=lim_(h->0) (sqrt(x)/(sqrt(x)sqrt(x+h))-sqrt(x+h)/(sqrt(x)sqrt(x+h)))/h#

Consolidate the numerator of the complex fraction.

#f'(x)=lim_(h->0) ((sqrt(x)-sqrt(x+h))/(sqrt(x)sqrt(x+h)))/h#

Dividing fractions is equivalent to multiplying by the reciprocal

#f'(x)=lim_(h->0) 1/h*((sqrt(x)-sqrt(x+h))/(sqrt(x)sqrt(x+h)))#

Rationalize the numerator

#f'(x)=lim_(h->0) 1/h*((sqrt(x)-sqrt(x+h))/(sqrt(x)sqrt(x+h)))*(sqrt(x)+sqrt(x+h))/(sqrt(x)+sqrt(x+h)#

Simplify. Remember difference of perfect squares.

#f'(x)=lim_(h->0) 1/h*((x-(x+h))/(sqrt(x)sqrt(x+h)(sqrt(x)+sqrt(x+h))))#

Distribute the negative in the numerator

#f'(x)=lim_(h->0) 1/h*(x-x-h)/(sqrt(x)sqrt(x+h)(sqrt(x)+sqrt(x+h)))#

The #x's# resolve to zero.

#f'(x)=lim_(h->0) 1/h*(-h)/(sqrt(x)sqrt(x+h)(sqrt(x)+sqrt(x+h)))#

The #h's# can be cancelled.

#f'(x)=lim_(h->0) (-1)/(sqrt(x)sqrt(x+h)(sqrt(x)+sqrt(x+h)))#

Now we can substitute in 0 for #h#.

#(-1)/(sqrt(x)sqrt(x+0)(sqrt(x)+sqrt(x+0)))#

#(-1)/(sqrt(x)sqrt(x)(sqrt(x)+sqrt(x)))#

Manipulate the exponents

#(-1)/(x(2sqrt(x)))=(-1)/(x^1*2*x^(1/2))=(-1)/(x^(2/2)*2*x^(1/2))=(-1)/(2x^(3/2))#