How do I use the limit definition of derivative to find f'(x) for f(x)=1/sqrt(x) ?

1 Answer
Oct 1, 2014

f(x)=1/sqrt(x)=1/x^(1/2)=x^(-1/2)

Note that a square root is equivalent to raising an expression to the 1/2 power.

f'(x)=lim_(h->0) (f(x+h)-f(x))/h

f(x+h)=1/sqrt(x+h)

f'(x)=lim_(h->0) (1/sqrt(x+h)-1/sqrt(x))/h

Find the common denominator

f'(x)=lim_(h->0) (1/sqrt(x+h)*sqrt(x)/sqrt(x)-1/sqrt(x)*sqrt(x+h)/sqrt(x+h))/h

f'(x)=lim_(h->0) (sqrt(x)/(sqrt(x)sqrt(x+h))-sqrt(x+h)/(sqrt(x)sqrt(x+h)))/h

Consolidate the numerator of the complex fraction.

f'(x)=lim_(h->0) ((sqrt(x)-sqrt(x+h))/(sqrt(x)sqrt(x+h)))/h

Dividing fractions is equivalent to multiplying by the reciprocal

f'(x)=lim_(h->0) 1/h*((sqrt(x)-sqrt(x+h))/(sqrt(x)sqrt(x+h)))

Rationalize the numerator

f'(x)=lim_(h->0) 1/h*((sqrt(x)-sqrt(x+h))/(sqrt(x)sqrt(x+h)))*(sqrt(x)+sqrt(x+h))/(sqrt(x)+sqrt(x+h)

Simplify. Remember difference of perfect squares.

f'(x)=lim_(h->0) 1/h*((x-(x+h))/(sqrt(x)sqrt(x+h)(sqrt(x)+sqrt(x+h))))

Distribute the negative in the numerator

f'(x)=lim_(h->0) 1/h*(x-x-h)/(sqrt(x)sqrt(x+h)(sqrt(x)+sqrt(x+h)))

The x's resolve to zero.

f'(x)=lim_(h->0) 1/h*(-h)/(sqrt(x)sqrt(x+h)(sqrt(x)+sqrt(x+h)))

The h's can be cancelled.

f'(x)=lim_(h->0) (-1)/(sqrt(x)sqrt(x+h)(sqrt(x)+sqrt(x+h)))

Now we can substitute in 0 for h.

(-1)/(sqrt(x)sqrt(x+0)(sqrt(x)+sqrt(x+0)))

(-1)/(sqrt(x)sqrt(x)(sqrt(x)+sqrt(x)))

Manipulate the exponents

(-1)/(x(2sqrt(x)))=(-1)/(x^1*2*x^(1/2))=(-1)/(x^(2/2)*2*x^(1/2))=(-1)/(2x^(3/2))