How do I find the x-intercept of an equation in the form #y = mx + b#?

1 Answer
Oct 7, 2014

The coordinates of a line or point on the x-axis will always have a #y# coordinate of #0#.

The following are examples of coordinates that lie on the #x#-axis.

#(-(3pi)/2,0)#
#(0,0)# the origin
#(-2,0)#
#(3,0)#
#(pi/2,0)#

To find the #x#-intercept you would substitute in the value of #0# for #y# variable and then solve for the #x# variable.

Example:

#y=2x+6#

#0=2x+6#

#-6=2x#

#-6/2=(2x)/2#

#-3=x#

#(-3,0) -># The y-intercept