What is a summary of Differentiation Rules?

1 Answer
Aug 4, 2014

Power rule:
if f(x) = x^nf(x)=xn then f'(x) = nx^(n-1)

Sum rule:
if f(x) = g(x)+h(x) then f'(x) = g'(x)+h'(x)

Product rule:
if f(x) = g(x)h(x) then f'(x) = g'(x)h(x) + g(x)h'(x)

Quotient rule:
if f(x) = g(x)/(h(x)) then f'(x) = (g'(x)h(x) - g(x)h'(x))/(h(x))^2

Chain rule:
if f(x) = h(g(x)) then f'(x) = h'(g(x))g'(x)
Or:
dy/dx=dy/(du)*(du)/dx

For more information:
http://socratic.org/calculus/basic-differentiation-rules/summary-of-differentiation-rules