How do you solve sin 4x + sin 2x = 0sin4x+sin2x=0 using the product and sum formulas?

1 Answer
Nov 27, 2014

\Rightarrow\sin 2(2x) + \sin 2x=0sin2(2x)+sin2x=0
\Rightarrow 2\sin 2x\cos 2x + \sin 2x = 02sin2xcos2x+sin2x=0
\Rightarrow \sin 2x(2\cos 2x + 1)=0sin2x(2cos2x+1)=0

Case 1: \sin 2x = 0sin2x=0,
\Rightarrow 2x = 0\Rightarrow x=0, 2\pi, 4\pi,...

Case 2: (2\cos 2x + 1) = 0
\Rightarrow 2\cos 2x = -1 \Rightarrow \cos 2x = -\frac{1}{2}
\Rightarrow 2x=\frac{2\pi}{3}, \frac{4\pi}{3}, \frac{8\pi}{3},\frac{10\pi}{3},...
\Rightarrow x=\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3},\frac{5\pi}{3},...

Cosine is positive in the 1st and 4th quadrants and negative in the 2nd and 3rd quadrants, hence the choice of angles.