How do you find the derivative of quotient (1-3x)/(1+3x)13x1+3x?

2 Answers
Apr 12, 2015

The Quotient Rule for Derivatives says
(d(g(x))/(h(x)))/(dx) = (g'(x)*h(x) - g(x)*h'(x))/(h^2(x))

So
(d ((1-3x)/ (1+3x)))/(dx)

= ( (-3)(1+3x) - (1-3x)(3) )/( (1+3x)^2 )

= (-6)/(9x^2+6x+1)

Apr 12, 2015

(-6)/((1+3x)^2)

Detail

Let

y=(1-3x)/(1+3x)

Differentiating both sides with respect to 'x'

(dy)/(dx)=d/dx((1-3x)/(1+3x))

Using quotient rule

(dy)/(dx)=((1+3x)d/dx(1-3x)-(1-3x)d/dx(1+3x))/((1+3x)^2)

(dy)/(dx)=((1+3x)(0-3)-(1-3x)(0+3))/((1+3x)^2)

(dy)/(dx)=((-3)(1+3x)-(3)(1-3x))/((1+3x)^2)

(dy)/(dx)=(-3(1)+(-3)(3x)-3(1)-3(-3x))/((1+3x)^2)

(dy)/(dx)=(-3-9x-3+9x)/((1+3x)^2)

(dy)/(dx)=(-3-3+cancel(9x)-cancel(9x))/((1+3x)^2)

(dy)/(dx)=(-6)/((1+3x)^2)