Differentiating ln(1+x)
Say: p=ln(1+x)=lnu
dpdu=1u=11+x
u=1+x, dudx=1
Therefore:
dpdx=11+x
Differentiating ln(1−x)
Say:
q=ln(1−x)=lnu
dqdu=1u=11−x
u=1−x, dudx=−1
Therefore:
dqdx=−11−x
Differentiating y=1√1−x2
y=1√1−x2
lny=ln(1√1−x2)
lny=ln1−ln((1−x2)12)
lny=−12ln(1−x2)
lny=−12ln((1+x)(1−x))
lny=−12{ln(1+x)+ln(1−x)}
lny=−12ln(1+x)−12ln(1−x)
1y⋅dydx=−12{11+x}−12{−11−x}
1y⋅dydx=12(1−x)−12(1+x)
y⋅1y⋅dydx=y{12(1−x)−12(1+x)}
dydx=1√1−x2{12(1−x)−12(1+x)}
dydx=1√(1+x)(1−x){12(1−x)−12(1+x)}
An explanation provided by Harivogind S. as to why the result above is the same as the result he has provided...
{12(1−x)−12(1+x)}=(1+x)−(1−x)2⋅(1−x)⋅(1+x) - common denominator.
=2x2⋅(1−x2)
{12(1−x)−12(1+x)}=x1−x2
and,
1√(1+x)(1−x)=1√(1−x2)
Therefore -
dydx=1√(1+x)(1−x){12(1−x)−12(1+x)}=1√1−x2⋅[x1−x2]
dydx=x(1−x2)32
*Quotient rule was not required in these workings as your fraction didn't contain both a numerator and denominator that were both functions of x.