How do you find the derivative using quotient rule and chain rule for #1/sqrt(1-x^2)#?

1 Answer
Apr 22, 2015

Differentiating #ln(1+x)#

Say: #p=ln(1+x)=lnu#

#(dp)/(du)=1/u=1/(1+x)#

#u=1+x#, #(du)/(dx)=1#

Therefore:

#(dp)/(dx)=1/(1+x)#

Differentiating #ln(1-x)#

Say:

#q=ln(1-x)=lnu#

#(dq)/(du)=1/u=1/(1-x)#

#u=1-x#, #(du)/(dx)=-1#

Therefore:

#(dq)/(dx)=-1/(1-x)#

Differentiating #y=1/sqrt(1-x^2)#

#y=1/sqrt(1-x^2)#

#lny=ln(1/sqrt(1-x^2))#

#lny=ln1-ln((1-x^2)^(1/2))#

#lny=-1/2ln(1-x^2)#

#lny=-1/2ln((1+x)(1-x))#

#lny=-1/2{ln(1+x)+ln(1-x)}#

#lny=-1/2ln(1+x)-1/2ln(1-x)#

#1/y*(dy)/(dx)=-1/2{1/(1+x)}-1/2{-1/(1-x)}#

#1/y*(dy)/(dx)=1/(2(1-x))-1/(2(1+x))#

#y*1/y*(dy)/(dx)=y{1/(2(1-x))-1/(2(1+x))}#

#(dy)/(dx)=1/(sqrt(1-x^2)){1/(2(1-x))-1/(2(1+x))}#

#(dy)/(dx)=1/(sqrt((1+x)(1-x))){1/(2(1-x))-1/(2(1+x))}#

An explanation provided by Harivogind S. as to why the result above is the same as the result he has provided...

#{1/(2(1-x))-1/(2(1+x))} = [(1+x) - (1-x)]/[ 2*(1-x)*(1+x)]# - common denominator.

#= (2x)/[2*(1-x^2)]#
#{1/(2(1-x))-1/(2(1+x))} = x/(1-x^2)#
and,
#1/sqrt[(1+x)(1-x)] = 1/sqrt[(1-x^2)]#
Therefore -
#(dy)/(dx)=1/(sqrt((1+x)(1-x))){1/(2(1-x))-1/(2(1+x))} = 1/sqrt(1-x^2)*[x/(1-x^2)]#
#(dy)/(dx)=x/(1-x^2)^(3/2)#

*Quotient rule was not required in these workings as your fraction didn't contain both a numerator and denominator that were both functions of x.