How do you find the derivative using quotient rule and chain rule for 11x2?

1 Answer
Apr 22, 2015

Differentiating ln(1+x)

Say: p=ln(1+x)=lnu

dpdu=1u=11+x

u=1+x, dudx=1

Therefore:

dpdx=11+x

Differentiating ln(1x)

Say:

q=ln(1x)=lnu

dqdu=1u=11x

u=1x, dudx=1

Therefore:

dqdx=11x

Differentiating y=11x2

y=11x2

lny=ln(11x2)

lny=ln1ln((1x2)12)

lny=12ln(1x2)

lny=12ln((1+x)(1x))

lny=12{ln(1+x)+ln(1x)}

lny=12ln(1+x)12ln(1x)

1ydydx=12{11+x}12{11x}

1ydydx=12(1x)12(1+x)

y1ydydx=y{12(1x)12(1+x)}

dydx=11x2{12(1x)12(1+x)}

dydx=1(1+x)(1x){12(1x)12(1+x)}

An explanation provided by Harivogind S. as to why the result above is the same as the result he has provided...

{12(1x)12(1+x)}=(1+x)(1x)2(1x)(1+x) - common denominator.

=2x2(1x2)
{12(1x)12(1+x)}=x1x2
and,
1(1+x)(1x)=1(1x2)
Therefore -
dydx=1(1+x)(1x){12(1x)12(1+x)}=11x2[x1x2]
dydx=x(1x2)32

*Quotient rule was not required in these workings as your fraction didn't contain both a numerator and denominator that were both functions of x.