How do you find the exact values of tan 112.5 degrees using the half angle formula?

2 Answers
Jul 22, 2015

tan(112.5)=(1+2)

Explanation:

112.5=11212=2252

**NB : ** This angle lies in the 2nd Quadrant.

tan(112.5)=tan(2255)=sin(2252)cos(2252)=   sin(2252)cos(2252)2=   sin2(2252)cos2(2252)

We say it's negative because the value of tan is always negative in the second quadrant!

Next, we use the half angle formula below :

sin2(x2)=12(1cosx)

cos2(x2)=12(1+cosx)

tan(112.5)=   sin2(2252)cos2(2252)= 12(1cos(225))12(1+cos(225))=1cos(225)1+cos(225)

Notice that : 225=180+45cos(225)=cos(45)

tan(112.5)=1(cos45)1+(cos45)=  1+22122=2+222

Now you want to Rationalize;

   (2+2)×(2+2)(22)×(2+2)= (2+2)242=2+22=2×(2+2)2×2=22+22=(1+2)

Jul 22, 2015

Find tan 112.5

Ans: (-1 - sqrt2)

Explanation:

Call tan 112.5 = tan t
tan 2t = tan 225 = tan (45 + 180) = tan 45 = 1
Use trig identity: tan2t=2t1t2 -->

1=2t1t2 --> t2+2t1=0
D=d2=b24ac=4+4=8d=±22

t=tan112.5=22±222=1±2

Since t = 112.5 deg is in Quadrant II, its tan is negative, then only the negative answer is accepted : (-1 - sqrt2)