How do you simplify cotB + (sinB / (1+cosB))cotB+(sinB1+cosB)?

2 Answers
Nov 5, 2015

cscbetacscβ

Explanation:

cotbetacotβ+sinbeta/(1+cosbeta)sinβ1+cosβ

1) Turn everything into sin and cos.

cosbeta/sinbeta+sinbeta/(1+cosbeta)cosβsinβ+sinβ1+cosβ

2) Use LCD and create a common numerator.

(1+cosbeta)/(1+cosbeta)*cosbeta/sinbeta+sinbeta/(1+cosbeta)*sinbeta/sinbeta1+cosβ1+cosβcosβsinβ+sinβ1+cosβsinβsinβ

((1+cosbeta)cosbeta+sin^2beta)/(sinbeta(1+cosbeta))(1+cosβ)cosβ+sin2βsinβ(1+cosβ)

3) Distibute cosbetacosβ in the denominator.

(cosbeta+(cos^2beta+sin^2beta))/(sinbeta(1+cosbeta))cosβ+(cos2β+sin2β)sinβ(1+cosβ)

4) Pythagorean Identity in the denominator. Then cancel out matching denominator and numerator.

cancel(cosbeta+(1))/(sinbeta (cancel(1+cosbeta)))

5) Left with 1/sinbeta = cscbeta

Nov 5, 2015

csc(B)

Explanation:

cot(B)+frac{sin(B)}{1+cos(B)}=frac{cos(B)}{sin(B)}+frac{sin(B)}{1+cos(B)}frac{1-cos(B)}{1-cos(B)}

=frac{cos(B)}{sin(B)}+frac{sin(B)[1-cos(B)]}{1-cos^2(B)}

=frac{cos(B)}{sin(B)}+frac{sin(B)[1-cos(B)]}{sin^2(B)}

=frac{cos(B)}{sin(B)}+frac{1-cos(B)}{sin(B)}

=frac{1}{sin(B)}

=csc(B)