What is the vertex form of #3y=8x^2 + 17x - 13?
1 Answer
Nov 25, 2015
The vertex form is
Explanation:
First, let's rewrite the equation so the numbers are all on one side:
3y=8x2+17x−13
y=8x23+17x3−133
To find the vertex form of the equation, we must complete the square:
y=8x23+17x3−133
y=83(x2+178x)−133
y=83(x2+178x+(178÷2)2−(178÷2)2)−133
y=83(x2+178x+(178⋅12)2−(178⋅12)2)−133
y=83(x2+178x+(1716)2−(1716)2)−133
y=83(x2+178x+(289256)−(289256))−133
y=83(x2+178x+(289256))−133−(289256⋅83)
y=83(x+1716)2−133−28996
y=83(x+1716)2−23532