How do you find the inverse of g(x)= log_3(x+2)-6g(x)=log3(x+2)6?

1 Answer
Dec 3, 2015

g^-1(x)=3^(x+6)-2g1(x)=3x+62

Explanation:

Write as:

color(white)(xx)y=log_3(z+2)-6×y=log3(z+2)6

Switch xx and yy.

color(white)(xx)x=log_3(y+2)-6×x=log3(y+2)6

Solve for yy.

color(white)(xx)x+6=log_3(y+2)×x+6=log3(y+2)

color(white)(xx)3^(x+6)=3^(log_3(y+2))×3x+6=3log3(y+2)

color(white)(xx)3^(x+6)=y+2×3x+6=y+2

color(white)(xx)3^(x+6)-2=y×3x+62=y

Rewrite with g^-1(x)g1(x) instead of yy.

color(white)(xx)g^-1(x)=3^(x+6)-2×g1(x)=3x+62