Function Composition
Key Questions
-
Answer:
Yes
Explanation:
Given composable functions
f ,g andh (f@(g@h))(x) = f((g@h)(x)) = f(g(h(x))) = (f@g)(h(x)) = ((f@g)@h)(x) So
f@(g@h) = (f@g)@h -
Answer:
If
g:A->B andf:B->C , then the domain off@g isbar(g)^(-1)@bar(f)^(-1)(C) using the notation described below...
Explanation:
If
g is a function that maps some elements of a setA to elements of a setB , then the domain ofg is the subset ofA for whichg(a) is defined.More formally:
g sube A xx B : AA a in A AA b_1, b_2 in B ((a, b_1) in g ^^ (a, b_2) in g) => b_1 = b_2 Use the notation
2^A to represent the set of subsets ofA and2^B the set of subsets ofB .Then we can define the pre-image function:
bar(g)^(-1): 2^B -> 2^A bybar(g)^(-1)(B_1) = {a in A : g(a) in B_1} Then the domain of
g is simplybar(g)^(-1)(B) If
f is a function that maps some elements of setB to elements of a setC , then:bar(f)^(-1): 2^C -> 2^B is defined bybar(f)^(-1)(C_1) = {b in B : f(b) in C_1} Using this notation, the domain of
f@g is simplybar(g)^(-1)(bar(f)^(-1)(C)) = (bar(g)^(-1)@bar(f)^(-1))(C) -
To compose a function is to input one function into the other to form a different function. Here's a few examples.
Example 1: If
f(x) = 2x + 5 andg(x) = 4x - 1 , determinef(g(x)) This would mean inputting
g(x) forx insidef(x) .f(g(x)) = 2(4x- 1) + 5 = 8x- 2 + 5 = 8x + 3 Example 2: If
f(x) = 3x^2 + 12 + 12x andg(x) =sqrt(3x) , determineg(f(x)) and state the domainPut
f(x) intog(x) .g(f(x)) = sqrt(3(3x^2 + 12x + 12)) g(f(x)) = sqrt(9x^2 + 36x + 36) g(f(x)) = sqrt((3x + 6)^2) g(f(x)) = |3x + 6| The domain of
f(x) isx in RR . The domain ofg(x) isx > 0 . Hence, the domain ofg(f(x)) isx > 0 .**Example 3: if
h(x) = log_2 (3x^2 + 5) andm(x) = sqrt(x + 1) , find the value ofh(m(0)) ? **Find the composition, and then evaluate at the given point.
h(m(x)) = log_2 (3(sqrt(x + 1))^2 + 5) h(m(x)) = log_2 (3(x + 1) + 5) h(m(x)) = log_2 (3x + 3 + 5) h(m(x)) = log_2 (3x + 8) h(m(2)) = log_2 (3(0) + 8) h(m(2)) = log_2 8 h(m(2)) = 3 Practice exercises
For the following exercises:
f(x) = 2x + 7, g(x) = 2^(x - 7) and h(x) = 2x^3 - 4 a) Determine
f(g(x)) b) Determine
h(f(x)) c) Determine
g(h(2)) Hopefully this helps, and good luck!