How do you divide 3+i div 1-4i?

1 Answer
Dec 6, 2015

-3/17+13/17i

Explanation:

Multiply by the complex conjugate.

(3+i)/(1-4i)=(3+i)/(1-4i)((1+4i)/(1+4i))=(3+12i+i+4i^2)/(1+4i-4i-16i^2)=(1+13i+4i^2)/(1-16i^2)

Recall that i=sqrt(-1), so i^2=-1.

=(1+13i+4(-1))/(1-16(-1))=(1-4+13i)/(1+16)=(-3+13i)/17=-3/17+13/17i

Notice how the answer is written in the a+bi form of a complex number.