What is the vertex form of y= 2x^2 - 5x – 3 ?

1 Answer
Dec 16, 2015

y=2(x-5/4)^2-49/8

Explanation:

To find the vertex form of the equation, we have to complete the square:

y=2x^2-5x-3

y=(2x^2-5x)-3

y=2(x^2-5/2x)-3

In y=ax^2+bx+c, c must make the bracketed polynomial a trinomial. So c is (b/2)^2.
y=2(x^2-5/2x+((5/2)/2)^2-((5/2)/2)^2)-3

y=2(x^2-5/2x+(5/4)^2-(5/4)^2)-3

y=2(x^2-5/2x+25/16-25/16)-3

Multiply -25/16 by the vertical stretch factor of 2 to bring -25/16 outside of the brackets.
y=2(x-5/4)^2-3-((25/16)*2)

y=2(x-5/4)^2-3- ((25/color(red)cancelcolor(black)16^8)*color(red)cancelcolor(black)2)

y=2(x-5/4)^2-3-25/8

y=2(x-5/4)^2-49/8