What is int_0^pi (lnx)^2 / x^(1/2)π0(lnx)2x12?

1 Answer
Dec 16, 2015

int_0^piln^2(x)/sqrt(x)dx = 2sqrt(pi)(ln^2(pi)-4ln(pi)+8)π0ln2(x)xdx=2π(ln2(π)4ln(π)+8)

Explanation:

First let's solve the indefinite integral intln^2(x)/sqrt(x)dxln2(x)xdx. by applying integration by parts twice:

First Integration by Parts

Let u = ln^2(x)u=ln2(x) and dv = 1/sqrt(x)dxdv=1xdx

Then du = (2ln(x))/xdu=2ln(x)x and v = 2sqrt(x)v=2x

Thus

intln^2(x)/sqrt(x)dx = intudvln2(x)xdx=udv

= uv - intvdu=uvvdu

=2sqrt(x)ln^2(x) - 4intln(x)/sqrt(x)dx=2xln2(x)4ln(x)xdx

Second Integration by Parts

Let u = ln(x)u=ln(x) and dv = 1/sqrt(x)dv=1x

Then du = 1/xdu=1x and v = 2sqrt(x)v=2x

Thus

intln(x)/sqrt(x)dx = intudvln(x)xdx=udv

= uv - intvdu=uvvdu

= 2sqrt(x)ln(x) - 2int1/sqrt(x)dx=2xln(x)21xdx

= 2sqrt(x)ln(x) - 4sqrt(x) + C=2xln(x)4x+C

Putting it together, we get

intln^2(x)/sqrt(x)dx = 2sqrt(x)ln^2(x) - 4intln(x)/sqrt(x)dxln2(x)xdx=2xln2(x)4ln(x)xdx

= 2sqrt(x)ln^2(x) - 4(2sqrt(x)ln(x) - 4sqrt(x) + C)=2xln2(x)4(2xln(x)4x+C)

= 2sqrt(x)(ln^2(x) - 4ln(x) + 8) + C=2x(ln2(x)4ln(x)+8)+C

Now we can evaluate the original definite integral.

int_0^piln^2(x)/sqrt(x)dx = [2sqrt(x)(ln^2(x) - 4ln(x) + 8)]_0^piπ0ln2(x)xdx=[2x(ln2(x)4ln(x)+8)]π0

(Note that as there is a discontinuity at 00 we must evaluate this using a limit)

= 2sqrt(pi)(ln^2(pi) - 4ln(pi) + 8) - lim_(x->0)2sqrt(x)(ln^2(x) - 4ln(x) + 8)

= 2sqrt(pi)(ln^2(pi) - 4ln(pi) + 8) - 0

= 2sqrt(pi)(ln^2(pi) - 4ln(pi) + 8)