What is the vertex form of y=-9x^2 +12x - 18 y=9x2+12x18?

1 Answer
Dec 26, 2015

Below is the proof (a completion of square)

Explanation:

y = -9x^2 + 12x - 18y=9x2+12x18

y = -9(x^2 - 12/9x) - 18y=9(x2129x)18

y = -9(x^2 - 12/9x + y=9(x2129x+_ - _ ) - 18#

_ = ((-12/9) / 2)^2_=(1292)2

_ = 4/9_=49

y = -9(x^2 - 12/9x + 4/9) - 4/9(-9) - 18y=9(x2129x+49)49(9)18

y= -9(x - 2/3)^2 - 14y=9(x23)214

So, y = -9x^2 + 12x - 18y=9x2+12x18 is equal to y = -9(x - 2/3)^2 - 14y=9(x23)214

Hopefully that explanation helped!