How do you solve for x in log (x+6)=1-log(x-5)log(x+6)=1log(x5)?

1 Answer
Jan 9, 2016

x_1=-(1+sqrt(161))/2x1=1+1612
x_2=(-1+sqrt(161))/2x2=1+1612

Explanation:

log(x+6)=1-log(x-5)log(x+6)=1log(x5)
then
log(x+6)+log(x-5)=1log(x+6)+log(x5)=1

using the rule of logaritm product

log((x+6)(x-5))=1log((x+6)(x5))=1

Remembering that Field of Existence of loglog is

(x+6)(x-5)>0(x+6)(x5)>0

we find:

FE: ]-oo,-6[ uu ]5,+oo[],6[]5,+[

Now:

10^(log((x+6)(x-5)))=10^110log((x+6)(x5))=101

(x+6)(x-5)=10(x+6)(x5)=10

x^2-5x+6x-30=10x25x+6x30=10

x^2+x-40=0x2+x40=0

x_(1,2)=(-b+-sqrt(b^2-4ac))/(2a)x1,2=b±b24ac2a

x_(1,2)=(-1+-sqrt(1+160))/(2)=(-1+-sqrt(161))/(2)x1,2=1±1+1602=1±1612

x_1=-(1+sqrt(161))/2x1=1+1612
x_2=(-1+sqrt(161))/2x2=1+1612

x_(1,2) in ]-oo,-6[ uu ]5,+oo[x1,2],6[]5,+[