log(x+6)=1-log(x-5)log(x+6)=1−log(x−5)
then
log(x+6)+log(x-5)=1log(x+6)+log(x−5)=1
using the rule of logaritm product
log((x+6)(x-5))=1log((x+6)(x−5))=1
Remembering that Field of Existence of loglog is
(x+6)(x-5)>0(x+6)(x−5)>0
we find:
FE: ]-oo,-6[ uu ]5,+oo[]−∞,−6[∪]5,+∞[
Now:
10^(log((x+6)(x-5)))=10^110log((x+6)(x−5))=101
(x+6)(x-5)=10(x+6)(x−5)=10
x^2-5x+6x-30=10x2−5x+6x−30=10
x^2+x-40=0x2+x−40=0
x_(1,2)=(-b+-sqrt(b^2-4ac))/(2a)x1,2=−b±√b2−4ac2a
x_(1,2)=(-1+-sqrt(1+160))/(2)=(-1+-sqrt(161))/(2)x1,2=−1±√1+1602=−1±√1612
x_1=-(1+sqrt(161))/2x1=−1+√1612
x_2=(-1+sqrt(161))/2x2=−1+√1612
x_(1,2) in ]-oo,-6[ uu ]5,+oo[x1,2∈]−∞,−6[∪]5,+∞[