How do you differentiate (ln(2x) )/ (cos2x)ln(2x)cos2x using the quotient rule?

1 Answer
Jan 11, 2016

f'(x)=(cos(2x)+2xln(2x)*sin(2x))/(xcos^2(2x))

Explanation:

f(x)=(h(x))/g(x)

with:

h(x)=ln(2x)=>h'(x)=1/(cancel(2)x)*cancel(2)=1/x

g(x)=cos(2x)=>g'(x)=-sin(2x)*2=-2sin(2x)

Using the Quotient Rule

f'(x)=(h'(x)*g(x)-h(x)*g'(x))/[g(x)]^2

then:

f'(x)=(1/x*cos(2x)-ln(2x)*(-2sin(2x)))/[cos(2x)]^2=

=(1/x*cos(2x)+2*ln(2x)*sin(2x))/cos^2(2x)=

(cos(2x)+2xln(2x)*sin(2x))/(xcos^2(2x))