How do you express sinθcscθ+secθ in terms of cosθ?

1 Answer
Jan 12, 2016

=1cos3(θ)cos(θ)1cos2(θ)

Explanation:

sin(θ)csc(θ)+sec(θ)

=sin(θ)1sin(θ)+1cos(θ)

=sin(θ)sin(θ)1sin(θ)+1cos(θ)

=sin2(θ)1sin(θ)+1cos(θ)

=1sin2(θ)sin(θ)+1cos(θ)

=cos2(θ)sin(θ)+1cos(θ)

=(cos2(θ)cos(θ))+1sin(θ)cos(θ)

=cos3(θ)+1cos(θ)1cos2(θ)

=1cos3(θ)cos(θ)1cos2(θ)