How do you express tanθcot2θ in terms of cosθ?

1 Answer
Jan 16, 2016

Explanation is given below.

Explanation:

tanθcot2θ

On handiling these kind of problem apply your previous knowledge on identity.

tanθ=sinθcosθ

cotθ=cosθsinθ

sin2θ=1cos2θ

Our problem:

tanθcot2θ

=sinθcosθcos2θsin2θ

=1cos2θcos(θ)cos2θ1cos2θ

=1cos2θ(1cos2θ)cosθ(1cos2θ)cos2θcosθcosθ(1cos2θ)

=(1cos2θ)32cos3θcosθ(1cos2θ)