How do you find the compositions given f(x) = 1/(1+x) and g(x) = sqrt(x+2)?

1 Answer
Jan 22, 2016

y=(f@g)(x)=1/(1+sqrt(x+2))=(sqrt(x+2)-1)/(x+1)

y=(g@f)(x)=sqrt(1/(1+x)+2)=sqrt((2x+3)/(1+x))

Explanation:

Given
f(x)= 1/(1+x)

g(x)=sqrt(x+2)

To find (f@g)(x), you can think:

u=g(x)=sqrt(x+2)

:.y=(f@g)=f(u)=1/(1+u)=1/(1+sqrt(x+2))=

=1/(1+sqrt(x+2))*(1-sqrt(x+2))/(1-sqrt(x+2))=(1-sqrt(x+2))/(1-x-2)=

=-(1-sqrt(x+2))/(x+1)=(sqrt(x+2)-1)/(x+1)

To find (g@f)(x), you can think:

u=f(x)=1/(1+x)

:.y=(g@f)=g(u)=sqrt(u+2)=sqrt(1/(1+x)+2)=

=sqrt((1+2+2x)/(1+x))=sqrt((2x+3)/(1+x))