How do you divide (3i)/(1+i) + 2/(2+3i) ?

2 Answers
Jan 28, 2016

27/26i+47/26

Explanation:

(3i)/(1+i)+2/(2+3i)
=(3i(1-i))/((1+i)(1-i))+(2(2-3i))/((2+3i)(2-3i)
=(3i-3i^2)/(1-i^2)+(4-6i)/(4-9i^2)
=(3i-3(-1))/(1-(-1))+(4-6i)/(4-9(-1)) [as, i^2=-1 ]
=(3i+3)/(1+1)+(4-6i)/(4+9)
=(3i+3)/2+(4-6i)/13
=3/2i+3/2+4/13-6/13i
=27/26i+47/26

Jan 28, 2016

47/26+27/26i

Explanation:

Get a common denominator.

=(3i(2+3i))/((1+i)(2+3i))+(2(1+i))/((1+i)(2+3i))

=(6i+9i^2)/(2+5i+3i^2)+(2+2i)/(2+5i+3i^2)

=(2+8i+9i^2)/(2+5i+3i^2)

This can be simplified since i^2=-1.

=(2+8i-9)/(2+5i-3)

=(-7+8i)/(-1+5i)

Now, multiply by the complex conjugate of the denominator.

=(-7+8i)/(-1+5i)((-1-5i)/(-1-5i))

=(7+27i-40i^2)/(1-25i^2)

=(7+27i+40)/(1+25)

=(47+27i)/26

=47/26+27/26i