How do you divide (3i)/(1+i) + 2/(2+3i) ?
2 Answers
Jan 28, 2016
Explanation:
Jan 28, 2016
Explanation:
Get a common denominator.
=(3i(2+3i))/((1+i)(2+3i))+(2(1+i))/((1+i)(2+3i))
=(6i+9i^2)/(2+5i+3i^2)+(2+2i)/(2+5i+3i^2)
=(2+8i+9i^2)/(2+5i+3i^2)
This can be simplified since
=(2+8i-9)/(2+5i-3)
=(-7+8i)/(-1+5i)
Now, multiply by the complex conjugate of the denominator.
=(-7+8i)/(-1+5i)((-1-5i)/(-1-5i))
=(7+27i-40i^2)/(1-25i^2)
=(7+27i+40)/(1+25)
=(47+27i)/26
=47/26+27/26i