How do you find the compositions given f(x) = 2x + 3 and h(x) = 2x^2 + 2x + 1?

1 Answer
Feb 2, 2016

f(h(x)) = 4x^2 + 4x + 2

h(f(x)) = 8x^2 + 28x + 25

Explanation:

Let's start with the composition f(h(x)).

To calculate this, you basically need to insert h(x) for every occurence of x in f(x):

f(color(violet)(x)) = 2color(violet)(x) + 3

f(color(blue)(h(x))) = 2color(blue)(h(x)) + 3 = 2(color(blue)(2x^2 + 2x + 1)) = 4x^2 + 4x + 2

Now, let's do the other composition, h(f(x)).

Similarly, here, you need to plug f(x) for every occurence of x in h(x):

h(color(violet)(x)) = 2color(violet)(x)^2 + 2color(violet)(x) + 1

h(color(blue)(f(x))) = 2[color(blue)(f(x))]^2 + 2color(blue)(f(x)) + 1

= 2(color(blue)(2x+3))^2 + 2(color(blue)(2x+3)) + 1

= 2(2x+3)^2 + 2(2x+3) + 1

... I'm using the formula (a+b)^2 = a^2 + 2ab + b^2...

= 2(4x^2 + 2 * 2x * 3 + 3^2) + 4x + 6 + 1

= 8x^2 + 24x + 18 + 4x + 6 + 1

= 8x^2 + 28x + 25