A parallelogram has sides A, B, C, and D. Sides A and B have a length of 5 and sides C and D have a length of 6 . If the angle between sides A and C is (7 pi)/18 , what is the area of the parallelogram?

1 Answer
Feb 2, 2016

"Area" = 15 sqrt(3) " units"^2

Explanation:

You have the lengths of all the sides and the angle between the sides A and C.

Thus, you can compute the area of the parallelogram with the formula

"Area" = A * C * sin((7pi)/18) = 5 * 6 * sin((7pi)/18) = 30 sin ((7pi)/18) " units"^2

Now, let's evaluate sin((7pi)/18).

Remember the table of sin and cos values:

{: ("angle (deg)", color(white)(xx) 0^@ color(white)(xxx) 30^@ color(white)(xxx) 45^@ color(white)(xxx) 60^@ color(white)(xxx) 90^@), ("angle (rad)", color(white)(xx) 0 color(white)(xxxx) pi/6 color(white)(xxxx) pi/4 color(white)(xxxxi) pi/3 color(white)(xxxx) pi/2), (,), (" "sin, color(white)(xx) 0 color(white)(xxxx) 1/2 color(white)(xxxiii) sqrt(2)/2 color(white)(xxxx) sqrt(3)/2 color(white)(xxxiii) 1), (" "cos, color(white)(xx) 1 color(white)(xxxiii) sqrt(3)/2 color(white)(xxxii) sqrt(2)/2 color(white)(xxxx) 1/2 color(white)(xxxxi) 0) :}

Using the formula

sin(x-y) = sin x cos y - cos x sin y,

we can express sin((7 pi)/18) as follows:

sin((7pi)/18) = sin((9pi)/18 - (2pi)/18) = sin(pi/2 - pi/6)

= sin(pi/2) cos(pi/6) - cos(pi/2) sin(pi/6)

= 1 * sqrt(3)/2 - 0 * 1/2

= sqrt(3)/2

Thus, we have

"Area" = 30 sin ((7pi)/18) = 30 * sqrt(3) /2 = 15 sqrt(3) " units"^2