How do you use the definition of a derivative to find the derivative of f(x) = x + sqrtx?
1 Answer
Explanation:
The definition of a derivative is
f'(x) = lim_(h->0) (f(x+h) - f(x))/h
= lim_(h->0) ((x+h + sqrt(x+h)) - (x + sqrt(x)))/h
= lim_(h->0) (cancel(x) + h + sqrt(x + h) - cancel(x) - sqrt(x))/h
= lim_(h->0) (h + sqrt(x + h) - sqrt(x))/h
= lim_(h->0) (h/h + (sqrt(x + h) - sqrt(x))/h)
= lim_(h->0) 1 + lim_(h->0) (sqrt(x + h) - sqrt(x))/h
... expand the fraction so that you can use the formula
= 1 + lim_(h->0) ((sqrt(x + h) - sqrt(x))* color(blue)((sqrt(x + h) + sqrt(x))))/(h * color(blue)((sqrt(x + h) + sqrt(x))))
= 1 + lim_(h->0) " "((sqrt(x+h))^2 - (sqrt(x))^2)/(h * (sqrt(x + h) + sqrt(x)))
= 1 + lim_(h->0) " "(x + h - x)/(h * (sqrt(x + h) + sqrt(x)))
= 1 + lim_(h->0) " "cancel(h)/(cancel(h) * (sqrt(x + h) + sqrt(x)))
= 1 + lim_(h->0) " "1/(sqrt(x + h) + sqrt(x))
At this point, you can safely plug
= 1 + 1/(sqrt(x) + sqrt(x))
= 1 + 1/(2sqrt(x))
Hope that this helped!