Given #f(x) = (3-2x) / (2x+1)# and #f(g(x)) = 7 - 3x# how do you find g(x)?
1 Answer
Explanation:
Even though we don't know
#f(x) = (3 - 2x) / (2x + 1) " "=> " " f(g(x)) = (3 - 2 g(x)) / (2 g(x) + 1)#
We also know that
#(3 - 2 g(x)) / (2 g(x) + 1) = 7 - 3x#
Let me write
#(3 - 2g)/(2g + 1) = 7 - 3x#
Now, you need to solve this equation for
... multiply both sides with
#<=> 3 - 2g = (7 - 3x) * (2g + 1)#
#<=> 3 - 2g = (7 - 3x) * 2g + (7 - 3x)#
Bring all products that include
So, subtract
#<=> - 2g - (7 - 3x) * 2g = (7 - 3x) - 3#
... factorize
#<=> (-2 - 14 + 6x) * g = 4 - 3x#
#<=> (-16 + 6x) * g = 4 - 3x#
... divide both sides by
#<=> g = (4 - 3x)/(-16 + 6x) = (4 - 3x)/(2(-8 + 3x))#
Thus, we have
#g(x) = (4 - 3x) / (-16 + 6x)#
It might be a good idea to test if the calculation was correct. To do so, compute
#f(g(x)) = f((4 - 3x) / (-16 + 6x)) #
#= (3 - 2 * (4 - 3x) / (2(-8+ 3x)))/(2 * (4 - 3x) / (2(-8 + 3x)) + 1) #
#= (3 - (4 - 3x) / (-8 + 3x))/( (4 - 3x) /(-8+ 3x) + 1) #
#= ((3(-8 + 3x) - (4 - 3x))/(-8 + 3x)) / ((4 - 3x + (-8 + 3x))/(-8 + 3x))#
#= (3(-8 + 3x) - (4 - 3x)) / (4 - 3x + (-8 + 3x)) = (-28 +12x) / (-4)#
#= 7 - 3x#