How do you simplify #i^3(2i^6-4i^21)#?
1 Answer
Feb 9, 2016
#i^3(2i^6 - 4 i^21) = 2i -4#
Explanation:
You should use the power laws
[1]
#" "a^m * a^n = a^(m+n)# [2]
#" "(a^m)^n = a^(m*n)#
Also, remember that
[3]
#" "i^2 = - 1#
and with the help of [3], you can compute
[4]
#" "i^4 = i^2 * i^2 = (-1) * (-1) = 1#
Thus, you can simplify as follows:
#i^3(2i^6 - 4 i^21) = i^3 * 2 i^6 - i^3 * 4 i^21#
#stackrel("[1] ")(=) 2i^(3+6) - 4 i^(3+21)#
#= 2i^9 - 4 i^24#
Now, let's evaluate
#i^9 = i^(4+4+1) = i^4 * i^4 * i^1 stackrel("[4] ")(=) 1 * 1 * i = i#
#i^24 = i^(6*4) = i^(6*4) stackrel("[2] ")(=) (i^4)^6= 1^6 = 1#
Thus, your result is
#i^3(2i^6 - 4 i^21) = 2i^9 - 4 i^24 = 2i - 4 #
Hope that this helped!