What is the slope of #f(x)=xe^(x-x^2) # at #x=-1#?

1 Answer
Feb 16, 2016

The slope of the function at x=-1 is #-2/e^2#

Explanation:

In order to find the slope of a function,we have to firstly determine its derivative.
so,
#d/dx(xe^(x-x^2))#

Applying product rule,

#(f.g)'=f'.g+g.f'#

so, #f=x,\g=e^{x-x^2}#

#\frac{d}{dx}(x)e^{x-x^2}+\frac{d}{dx}(e^{x-x^2})x#

We know...
#d/dx(x)=1#

and,
#\frac{d}{dx}(e^{x-x^2})#
Applying chain rule, #\frac{df(u\)}{dx}=\frac{df}{du}\cdot \frac{du}{dx}#

let #x-x^2=u#

#\frac{d}{du}(e^u\)\frac{d}{dx}\(x-x^2)#

We get,

#(e^u)(1-2x)#

Substituting back #x-x^2=u#,

=#e^{x-x^2}(1-2x)#

= #1e^{x-x^2}+e^{x-x^2}(1-2x)x#

Simplifying it,

#e^{x-x^2}(-2x^2+x+1)#

Finally when #x=-1#
# e^{(-1)-(-1)^2}[-2(-1)^2+(-1)+1]# = #e^-2 . (-2)#= #-2/e^2#