What is int (-x^3-2x-3 ) / (7x^4+ 5 x -1 )x32x37x4+5x1?

1 Answer
Mar 1, 2016

#-.65697ln|x-.19785|-.01191ln|x+.95254|-.51407ln|.78462/sqrt(x^2-.75468x+.75801)|-.05036tan^(-1)((x-.37734)/.78462)+const.#

Explanation:

What are the roots of the polynomial
7x^4+5x-17x4+5x1?

This is a depressed quartic function and I recommend this 2 sources (the first is to show work, the second for a fast solution) to resolve it:

http://www.sosmath.com/algebra/factor/fac12/fac12.html

http://www.mathportal.org/calculators/polynomials-solvers/polynomial-roots-calculator.php

From the root finder we get:

x_1=.19785x1=.19785
x_2=-.95254x2=.95254
x_3=.37734+i.78462x3=.37734+i.78462
x_4=.37734-i.78462x4=.37734i.78462

For not to deal with complex numbers we have
(x-x_3)(x-x_4)=x^2-.75468x+.75801(xx3)(xx4)=x2.75468x+.75801

The original function can be rewritten in partial fractions in this way
(-x^3-2x-3)/(7x^4+5x-1)=A/(x-.19785)+B/(x+.95254)+(Cx+D)/(x^2-.75468x+.75801)x32x37x4+5x1=Ax.19785+Bx+.95254+Cx+Dx2.75468x+.75801

For x=0, -1, 1 and 2x=0,1,1and2 we get

A/-.19785+B/.95254+0*C+D/.75468=3A.19785+B.95254+0C+D.75468=3
A/-1.19785+B/.04746+(-C+D)/5.51269=0A1.19785+B.04746+C+D5.51269=0
A/.80215+B/1.95254+(C+D)/1.00333=-6/11A.80215+B1.95254+C+D1.00333=611
A/1.80295+B/2.95254+(2C+D)/3.24865=-15/121A1.80295+B2.95254+2C+D3.24865=15121

Or

[[-5.05433,1.04982,0,1.31924],[-.83483,21.07038,-.39798,.39798],[1.24665,.51215,.99668,.99668],[.55489,.33869,.61564,.30782]][[A],[B],[C],[D]]=[[3],[0],[-6/11],[-15/121]]

Solving this system of variables we get

A=-.65697
B=-.01191
C=.51407
D=-.23349

So the original expression becomes

-.65697int dx/(x-.19785)-.01191int dx/(x+.95254)+int (.51407x-.23349)/(x^2-.75468x+.75801)dx [ alpha ]

Let's resolve the last part of the expression, the only one that poses a challenge
int (.51407x-.23349)/(x^2-.75468x+.75801)dx=

(x-.37734)^2=x^2-.75468+.14239
=> x^2-.75468x+.75801=(x-.37734)^2+.61562
(x-.37734)=sqrt(.61562)tany=.78462tany
dx=.78462sec^2ydy
How many units of (x-.37734) are there in the numerator?
#(.51407x-.23349)/(x-.37734)=.51407-.03951/(x-.37734)#

That's why now we are dealing with
=.51407int (.78462tany*.78462cancel(sec^2y))/(.61562cancel(sec^2y))dy-.03951int (.78462cancel(sec^2y))/(.61562cancel(sec^2y)dy
=.51407int tanydy-.05036int dy
=-.51407ln |cosy|-.05036y

tany=(x-.37734)/.78462 => siny=(x-.37734)/.78462cosy
=>sin^2y+cos^2y=1 => ((x^2-.75468x+.14239)/.61562+1)cos^2 y=1 => cosy=.78462/sqrt(x^2-.75468x+.75801)
-> =-.51407 ln |.78462/sqrt(x^2-.75468x+.75801)|-.05036tan^(-1)((x-.37734)/.78462)

Therefore expression [ alpha ] becomes
#-.65697ln|x-.19785|-.01191ln|x+.95254|-.51407ln|.78462/sqrt(x^2-.75468x+.75801)|-.05036tan^(-1)((x-.37734)/.78462)+const.#