Using the integral test, how do you show whether sum1 / (n (log n)^p ) 1n(logn)p diverges or converges from n=3 to infinity?

1 Answer
Mar 7, 2016

For p = 1p=1, the row diverges. For p > 1p>1, the row converges.

Explanation:

I am assuming that pp is a natural number, p >= 1p1, and that log nlogn is the natural logarithm ln nlnn.

=======================

The integral test states:

The row

sum_(n=3)^(oo) 1 / (n (ln n)^p)n=31n(lnn)p

converges to a real number if and only if the integral

int_3^(oo) 1 / (x (ln x)^p) "d" x31x(lnx)pdx

is finite.

=======================

1) Let's first consider p = 1p=1.

If p = 1p=1, we need to determine if the following integral is finite:

int_3^(oo) 1 / (x ln x) "d"x = lim_(t->oo) int_3^t 1 / (x ln x) "d"x

= lim_(t->oo) int_3^t 1 / ln x * 1 / x "d"x

... substitute u = ln x " " => ("d"u)/("d"x) = 1 / x => "d"u = 1 / x * "d" x

= lim_(t->oo) int_3^t 1 / u "d"u

= lim_(t->oo) [ ln abs(u) ]_(x=3)^(x=t)

... substitute back u = ln x...

= lim_(t->oo) [ ln abs(ln x) ]_(x=3)^(x=t)

= lim_(t->oo) ( ln abs (ln t) - ln abs(ln 3) )

The second term is clearly finite. However, we know that

lim_(t->oo) ln t = oo,

thus it also follows that

lim_(t->oo) ln (abs(ln t)) = oo.

We can conclude that for p = 1, the integral is infinite and thus, the row diverges.

=======================

2) Now let p > 1.

Now let us take a look at the integral if p > 1:

int_3^(oo) 1 / (x (ln x)^p) "d" x = lim_(t -> oo) int_3^t 1 / (x (ln x)^p) "d" x

= lim_(t->oo) int_3^t 1 / (ln x)^p * 1 / x "d"x

... substitute u = ln x " " => ("d"u)/("d"x) = 1 / x => "d"u = 1 / x * "d" x

= lim_(t->oo) int_3^t 1 / u^p " d" u

= lim_(t->oo) int_3^t u^(-p) " d" u

= lim_(t->oo) [ " "1/(-p+1) u^(-p+1) " "]_(x=3)^(x=t)

... substitute back u = ln x...

= lim_(t->oo) [ " "1/(1-p) (ln x)^(1-p) " "]_(x=3)^(x=t)

= lim_(t->oo) [ 1 / ((1-p) (ln x)^(p-1))]_(x=3)^(x=t)

= lim_(t->oo) [ 1 / ((1-p) (ln t)^(p-1)) - 1 / ((1-p) (ln 3)^(p-1)) ]

For p > 1, the second term is clearly finite.

Thus, the only thing left to do is determine the limit behaviour

lim_(t-> oo) 1 / ((1 - p) (ln t)^(p-1)).

As we know that ln t diverges for t -> oo, we can conclude that

lim_(t-> oo) 1 / ((1-p) (ln t)^(p-1)) = 0.

Thus, the integral is finite which means that for p > 1, the row converges.