How do you solve 6^x + 4^x = 9^x6x+4x=9x?

1 Answer

x=(ln((1+sqrt(5))/2))/(ln (3/2))x=ln(1+52)ln(32)

Explanation:

Divide by 4^x4x to form a quadratic in (3/2)^x(32)x.
Use 6^x/4^x=(6/4)^x=(3/2)^x and (9/4)^x=((3/2)^2)^x=((3/2)^x)^26x4x=(64)x=(32)xand(94)x=((32)2)x=((32)x)2.
((3/2)^x)^2-(3/2)^x-1=0((32)x)2(32)x1=0

So, (3/2)^x=(1+-sqrt(1-4*1*(-1)))/2=(1+-sqrt(5))/2(32)x=1±141(1)2=1±52


For the positive solution:

(3/2)^x=(1+sqrt(5))/2(32)x=1+52

Applying logarythms:

xln (3/2)=ln((1+sqrt(5))/2)xln(32)=ln(1+52)

x=(ln((1+sqrt(5))/2))/(ln (3/2))=1.18681439....