How do you simplify #(5 + 2i)(5 - 2i)# and write in a+bi form?
1 Answer
May 17, 2016
Explanation:
Given,
#(color(red)5color(white)(i)color(blue)(+2i))(color(darkorange)5color(white)(i)color(teal)(-2i))#
Use the F.O.I.L. (first, outside, inside, last) method to expand the brackets.
#=color(red)5(color(darkorange)5)color(white)(i)color(red)(+5)(color(teal)(-2i))color(white)(i)color(blue)(+2i)(color(darkorange)5)color(white)(i)color(blue)(+2i)(color(teal)(-2i))#
Simplify.
#=25-10i+10i-4i^2#
#=25-4i^2#
Since
#=25-4(-1)#
#=25+4#
#=color(green)(|bar(ul(color(white)(a/a)color(black)(29)color(white)(a/a)|)))#