How do you solve a^2 - 4a - 21 = 0a24a21=0 by completing the square?

1 Answer
May 24, 2016

The solutions are:
color(green)(a = 7a=7 , color(green)(a = -3a=3

Explanation:

a^2 -4a - 21 = 0a24a21=0

a^2 -4a = 21a24a=21

To write the Left Hand Side as a Perfect Square, we add 4 to both sides
a^2 -4a + color(green)(4) = 21 + color(green)(4a24a+4=21+4

a^2 - 2 * a * 2 + 2^2 = 25a22a2+22=25

Using the Identity color(blue)((a-b)^2 = a^2 - 2ab + b^2(ab)2=a22ab+b2, we get

(a-2)^2 = 25(a2)2=25

a-2 = sqrt25a2=25 or a-2 = -sqrt25a2=25

a-2 = 5a2=5 or a-2 = -5a2=5

a = 5+2a=5+2 or a = -5+2a=5+2

color(green)(a = 7a=7 , color(green)(a = -3a=3